Jordy GROFFEN,Henk K. PARMENTIER,Willem A. C. VAN DE VEN and Merlijn VAN WEERD.Effects of Different Rearing Strategies and Ages on Levels of Natural Antibodies in Saliva of the Philippine Crocodile[J].Asian Herpetological Research(AHR),2013,4(1):22-27.[doi:10.3724/SP.J.1245.2013.00022]
Click Copy

Effects of Different Rearing Strategies and Ages on Levels of Natural Antibodies in Saliva of the Philippine Crocodile
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

2013 VoI.4 No.1
Research Field:
Original Article
Publishing date:


Effects of Different Rearing Strategies and Ages on Levels of Natural Antibodies in Saliva of the Philippine Crocodile
Jordy GROFFEN1* Henk K. PARMENTIER1 Willem A. C. VAN DE VEN2 and Merlijn VAN WEERD2 3
1 Department of Adaptation Physiology, Wageningen University, Marijkeweg 40, 6709 PG Wageningen, the Netherlands
2 Mabuwaya Foundation Inc, Isabela State University Cabagan Campus, Garita, Cabagan, 3328 Isabela, the Philippines
3 Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA Leiden, the Netherlands
behaviour Crocodylus mindorensis diet disease husbandry stress
The endemic Philippine crocodile (Crocodylus mindorensis) is a relatively small, critically endangered freshwater crocodile. In a head start program, crocodile hatchlings are caught in the wild, reared in captivity, and released back into the wild after two years. The current study aimed to determine optimal rearing strategies of Philippine crocodile hatchlings, including identification of possible diseases during rearing, and studying the effect of ages on natural antibody (NAb) levels. Thirty Philippine crocodiles were divided into two groups, half were reared with a hiding board, and half without the hiding board. Both groups received three different kinds of diets: meat, shrimp, or a combination of both. Saliva samples of the crocodiles were taken three times over a period of three months to test for NAb levels. Saliva samples were also taken from older crocodiles and crocodiles from different locations. NAb titres were compared to sheep red blood cells. Each time saliva samples were taken, a health check was done. The results showed that crocodiles would prefer the hiding board, and neither housing nor diet could affect the level of NAb titres in saliva. A positive correlation was found between NAb titres and body size, weight and age. Wild hatchlings had higher NAb titres than the hatchlings born in captivity, but the difference diminished with ageing. Five different diseases were found.


Attansio R., Brasky K. M., Robbins S. H., Jayashankar L., Nash R. J., Buttler T. M. 2001. Age-related autoantibody production in a nonhuman primate model. Clin Exp Immunol, 123: 361–365
Baker N., Ehrenstein M. R. 2002. Cutting edge: Selection of B lymphocytes subsets is regulated by natural IgM. J Immunol, 169: 6686–6690
Berghof T. V. L., De Vries Reilingh G., Nieuwland M. G. B., Parmentier H. K. 2010. Effect of ageing and repeated intratracheal challenge on levels of cryptic and overt natural antibodies in poultry. Poultry Sci, 89: 227–235
Bruley-Rosset M., Mouthon L., Chanseaud Y., Dhainaut F., Lirochon J., Bourel D. 2003. Polyreactive autoantibodies purified from human intravenous immunoglobulins prevent the development of experimental autoimmune diseases. Lab Invest, 83: 1013–1023
Buenviaje G. N., Ladds P. W., Melville L., Manolis S. C. 1994. Disease–husbandry associations in farmed crocodiles in Queensland and the Northern Territory. Aus Vet J, 71: 165–173
Cheng H. M., Chamley L. 2008. Cryptical natural autoantibodies and copotentiators. Autoimmun Rev, 7: 431–434
Cichon M., Sendecka J., Gustavsson L. 2003. Age-related decline in humoral immune function in collared flycatchers. J Evol Biol, 16: 1205–1210
Foggin C. M. 1987. Diseases and disease control on crocodile farms in Zimbabwe. In Webb G. J. W., Manolis S. C., Whitehead P. J. (Eds.), Wildlife management: Crocodiles and alligators. Chipping Norton, New South Wales, Australia: Surrey Beatty and Sons, 351–362
Gerdes G. H. 1991. Morphology of poxviruses from reptiles. Vet Rec, 128: 452
Haghighi H. R., Gong J., Gyles C. L., Hayes M. A., Zhou H., Sanei B., Chambers J. R., Shariff S. 2006. Probiotics stimulate production of natural antibodies in chickens. Clin Vaccine Immunol, 13: 975–980
Hayward A. D., Wilson A. J., Pilkington J. G., Pemberton J. M., Kruuk L. E. B. 2009. Ageing in a variable habitat: Environmental stress affects senescence in parasite resistance in St Kilda Soay sheep. Proc Biol Sci, 276: 3477–3485
Huchzermeyer F. W. 1986. Osteomalacia in young captive crocodiles (Crocodylus niloticus). J S Afr Vet Assoc, 57: 167–168
Huchzermeyer F. W., Gerdes G. H., Foggin C. M., Huchzermeyer K. D. A., Limper L. C. 1994. Hepatitis in farmed hatchling Nile crocodiles (Crocodylus niloticus) due to chlamydial infection. J S Afr Vet Assoc, 65: 20–22
Huchzermeyer F. W. 2003. Crocodiles: Biology, Husbandry and Diseases. Onderstepoort Veterinary Institute, South Africa: CABI Publishing
IUCN. 2011. IUCN Red List of Threatened Species. Internet references. Retrieved from
Kachamakova N. M., Irnazarow I., Parmentier H. K., Savelkoul H. F. J., Pilarczyk A., Wiegertjes G. F. 2006. Genetic differences in natural antibody levels in common carp (Cyprinus carpio L.). Fish Shellfish Immunol, 21: 404–413
Lanzavecchia A., Sallusto F. 2007. Toll-like receptors and innate immunity in B-cell activation of antibody responses. Curr Opin Immunol, 9: 268–274
Longenecker B. M., Mosmann T. R. 1980. ‘Natural’ antibodies to chicken MHC antigens are present in mice, rats, humans, alligators and allogeneic chickens. Immunogenetics, 11: 293–302
Madsen T., Ujvari B. 2006. MHC Class I associates with parasite resistance and longevity in tropical pythons. J Evol Biol,?19: 1973–1978
Madsen T., Ujvari B., Nandakumar K. S., Hasselquist D., Holmdahl R. 2007. Do ‘‘infectious’’ prey select for high levels of natural antibodies in tropical pythons? Evol Ecol, 21: 271–279
Matson K. D., Ricklefs R. E., Klasing K. C. 2005. A hemolysis–hemagglutination assay for characterizing constitutive innate humoral immunity in wild and domestic birds. Dev Com Immunol, 29: 275–286
Miller R. A. 1996. The ageing immune system: Primer and prospectus. Science, 273: 70–74
Natarajan K., Muthukkaruppan V. R. 1985. Distribution and ontogeny of B cells in the garden lizard, Calotes versicolour. Dev Comp Immunol, 9: 301–310
Nobrega A., Haury M., Gueret R., Coutinho A., Weksler M. E. 1996. The age-associated increase in autoreactive immunoglobulins reflects a quantitative increase in specificities detectable at lower concentration in young mice. Scand J Immunol, 44: 437–443
Ochsenbein A. F., Fehr T., Lutz C., Suter M., Brombacher F., Hengartner H., Zinkernagel R. M. 1999. Control of early viral and bacterial distribution and disease by natural antibodies. Science, 286: 2156–2159
Ochsenbein A. F., Zinkernagel R. M. 2000. Natural antibodies and complement link innate and acquired immunity. Immunol Tod, 21: 624–630
Palacio M. G., Cunnick J. E., Winkler D. W., Vleck C. M. 2007. Immunosenescence in some but not all immune components in a free-living vertebrate, the tree swallow. Proc Biol Sci, 274: 951–957
Parmentier H. K., Lammers A., Hoekman J. J., De Vries Reilingh G., Zaanen I. T. A., Savelkoul H. F. J. 2004. Different levels of natural antibodies in chickens divergently selected for specific antibody response. Dev Comp Immunol, 28: 39–49
Pawelec G., Larbi, A., Derhovanessian E. 2010. Senescence of the human immune system. J Comp Pathol, 142: 39–44
Pelletier F., Page K. A., Ostiguy T., Festa-Bianchet M. 2005. Fecal counts of lungworm larvae and reproductive effort in bighorn sheep, Ovis canadensis. Oikos, 110: 473–480
Prokesova L., Tuckova L., Cukrowska B., Tlaskalova-Hogenova H., Barot-Ciobaru R. 1996. Occurrence and specificity of human natural and in vitro induced antibodies to Nocardia opaca anigens. Int J Immunopharmaco, 18: 661–668
Saino N., Ferrari R. P., Romano M., Rubolini D., M?ller A. P. 2003. Humoral immune response in relation to senescence, sex and sexual ornamentation in the barn swallow (Hirundo rustica). J Evol Biol, 16: 1127–1134
Schmidt K. P. 1935. A new crocodile from the Philippine islands. Fieldiana Zool, 20: 67–70
Sparkman A. M., Palacios M. G. 2009. A test of life-history theories of immune defence in two ecotypes of the garter snake, Thamnophis elegans. J Anim Ecol, 78: 1242–1248
Star L., Frankena K., Kemp B., Nieuwland M. G. B., Parmentier H. K. 2007. Innate immune competence and survival in pure bred layer lines. Poultry Sci, 86: 1090–1099
Ujvari B., Madsen T. 2011. Do natural antibodies compensate for humoral immunosenescence in tropical pythons? Funct Ecol, 25: 813–817
Van de Ven W. A. C., Guerrero J. P., Rodriguez D. G., Telan S. P., Balbas M. G., Tarun B. A., van Weerd M., van der Ploeg J., Wijtten Z., Lindeyer F. E., de Iongh H. H. 2009. Effectiveness of head-starting to bolster Philippine crocodile Crocodylus mindorensis populations in San Mariano municipality, Luzon, Philippines. Conserv Evid, 6: 111–116
Van Weerd M., van der Ploeg J. 2008. Philippine crocodile hatchling head-start and re-enforcement program in San Mariano, Isabela Province, Luzon, the Philippines. In Soorae P. S. (Ed.), Global re-introduction perspectives: Re-introduction case-studies from around the globe. Abu Dhabi: IUCN/SCC Re-introduction Specialist Group, 79–83
Van Weerd M. 2010.?Philippine Crocodile Crocodylus mindorensis. In Manolis S. C., Stevenson C. (Eds.),?Crocodiles. Status Survey and Conservation Action Plan. 3rd edition. Darwin: IUCN SSC Crocodile Specialist Group, 71–78
Wegmann T. G., Smithies O. 1966. A simple hemagglutination system requiring small amounts of red cells and antibodies. Transfusion, 6: 67–73
Zhou Z. H., Notkins A. L. 2004. Polyreactive antigen-binding B (PAB-) cells are widely distributed and the PAB population consists of both B-1+ and B-1- phenotypes. Clin Exp Immunol, 137: 88–100
Zimmerman L. M., Vogel L. A., Bowden R. M. 2009. Commentary; understanding the vertebrate immune system: Insights from the reptilian perspective. J Exp Biol, 213: 661–671


Last Update: 2016-03-15