Xueqing WANG,Shuran LI,Li LI,et al.Thermal-physiological Strategies Underlying the Sympatric Occurrence of Three Desert Lizard Species[J].Asian Herpetological Research(AHR),2019,10(3):190-196.[doi:10.16373/j.cnki.ahr.190007]
Click Copy

Thermal-physiological Strategies Underlying the Sympatric Occurrence of Three Desert Lizard Species
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

Issue:
2019 VoI.10 No.3
Page:
190-196
Research Field:
Publishing date:
2019-09-23

Info

Title:
Thermal-physiological Strategies Underlying the Sympatric Occurrence of Three Desert Lizard Species
Author(s):
Xueqing WANG12 Shuran LI3 Li LI1 Fushun ZHANG4 Xingzhi HAN5 Junhuai BI1*# and Baojun SUN2*#
1 College of Life Science, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, China
2 Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
3 College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, Zhejiang, China
4 Grassland research institute, Chinese Academy of Agricultural Sciences, Hohhot 010010, Inner Mongolia, China
5 College of wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, China
Keywords:
Sympatric lizards resting metabolic rate locomotion Eremias argus E. multiocellata Phrynocephalus przewalskii
PACS:
-
DOI:
10.16373/j.cnki.ahr.190007
Abstract:
Sympatric reptiles are the ideal system for investigating temperature-driven coexistence. Understanding thermally physiological responses of sympatric lizards is necessary to reveal the physiological mechanisms that underpin the sympatric occurrence of reptiles. In this study, we used three lizard species, Eremias argus, E. multiocellata, and Phrynocephalus przewalskii, which are sympatric in the Inner Mongolia desert steppe, as a study system. By comparing their resting metabolic rates (RMR) and locomotion at different body temperatures, we aimed to better understand their physiological responses to thermal environments, which may explain the sympatric occurrence of these lizards. Our results showed that E. argus had significantly higher RMR and sprint speed than E. multiocellata, and higher RMR than P. przewalskii. In addition, the optimal temperature that maximized metabolic rates and locomotion for E. argus and E. multiocellata was 36°C, whereas for P. przewalskii it was 39°C. Our study revealed the physiological responses to temperatures that justify the sympatric occurrence of these lizards with different thermal and microhabitat preferences and active body temperatures. Eremias argus and E. multiocellata, which have lower body temperatures than P. przewalskii, depend on higher RMR and locomotion to compensate for their lower body temperatures in field conditions. Our study also highlights the importance of using an integrative approach, combining behavior and physiology, to explore the basis of sympatric occurrence in ectothermic species.

References:

Adolph S. C. 1990. Influence of behavioral thermoregulation on microhabitat use by two sceloporus lizards. Ecology, 71(1): 315–327
Angilletta M. J. 2009. Thermal adaptation: A theoretical and empirical synthesis. Oxford: Oxford University Press
Angilletta M. J., Niewiarowski P. H., Navas C. A. 2002. The evolution of thermal physiology in ectotherms. J Therm Biol, 27(4): 249–268
Bergmann P. J., Irschick D. J. 2010. Effects of temperature on maximum clinging ability in a diurnal gecko: evidence for a passive clinging mechanism? J Exp Zool A, 303A(9): 785–791
Brown J. H., Gillooly J. F., Allen A. P., Savage V. M., West G. B. 2004. Toward a metabolic theory of ecology. Ecology, 85(7): 1771–1789
Chen X. J., Xu X. F., Ji X. 2003. Influence of body temperature on food assimilation and locomotor performance in white-striped grass lizards, Takydromus wolteri (Lacertidae). J Therm Biol, 28(5): 385–391
Du W. G., Yan S. J., Ji X. 2000. Selected body temperature, thermal tolerance and thermal dependence of food assimilation and locomotor performance in adult blue-tailed skinks, Eumeces elegans. J Therm Biol, 25(3): 197–202
Gilbert A. L., Miles D. B. 2017. Natural selection on thermal preference, critical thermal maxima and locomotor performance. Proc Biol Sci, 284(1860): 20170536
Gillooly J. F., Brown J. H., West G. B., Savage V. M., Charnov E. L. 2001. Effects of size and temperature on metabolic rate. Science, 293: 2248–2250
Glazier D. S. 2015. Is metabolic rate a universal ‘pacemaker’for biological processes? Biol Rev, 90(2): 377–407
Hardin G. 1960. The competitive exclusion principle. Science, 131(3409): 1292–1297
Hertz P. E. 1992. Evaluating thermal resource partitioning by sympatric lizards Anolis cooki and A. cristatellus: a field test using null hypotheses. Oecologia: 90: 127–136
Hochachka P. W., Somero G. N. 2002. Biochemical adaptation. Oxford: Oxford University Press
Huey R. B., Kingsolver J. G. 1989. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol Evol, 4: 131–135
Husak J. F., Fox S. F. 2006. Field use of maximal sprint speed by collared lizards (Crotaphytus collaris): Compensation and sexual selection. Evolution, 60(9): 1888–1895
Ji X. 1995. Some aspects of thermal biology of the skink (Eumeces chinensis). Acta Zool Sin, 41: 268–274
Ji X., Du W. G., Sun P. Y. 1996. Body temperature, thermal tolerance and influence of temperature on sprint speed and food assimilation in adult grass lizards, Takydromus septentrionalis. J Therm Biol, 21(3): 155–161
Li S. R., Wang Y., Ma L., Zeng Z. G., Bi J. H., Du W. G. 2017. Thermal ecology of three coexistent desert lizards: Implications for habitat divergence and thermal vulnerability. J Comp Physiol B, 187(7): 1009–1018
Luo X., Wu T. P., Huang A. Q. 2016. Diet analysis and foraging strategy of two sympatric pheasants at Mt. Gaoligong in winter. Chinese J Ecol, 35(4): 1003–1008
Ma L., Sun B. J., Cao P., Li X. H., Du W. G. 2018a. Phenotypic plasticity may help lizards cope with increasingly variable temperatures. Oecologia, 187: 37–45
Ma L., Sun B. J., Li S. R., Hao X., Bi J. H., Du W. G. 2018b. The vulnerability of developing embryos to simulated climate warming differs between sympatric desert lizards. J Exp Zool A, 329(4-5): 252–261
Martinvallejo J., Garciafernandez J., Perezmellado V., Vicentevillardon J. L. 1995. Habitat selection and thermal ecology of the sympatric lizards Podarcis muralis and Podarcis hispanica in a mountain region of central spain. Herpetol J, 5(1): 181–188
McNab B. K. 2002. The physiological ecology of vertebrates: a view from energetics. New York: Cornell University Press
McNab B. K. 2003. Standard energetics of phyllostomid bats: the inadequacies of phylogenetic-contrast analyses. Com Biochem and Phys A, 135(3): 357–368
Osojnik N., Zagar A., Carretero M. A., Garcia-Munoz E., Vrezec A. 2013. Ecophysiological dissimilarities of two sympatric lizards. Herpetologica, 69(4): 445–454
Pacala S. W., Roughgarden J. 1985. Population experiments with the anolis lizards of St. Maarten and St. Eustatius. Ecology, 66(1): 129–141
Pianka B. E. R. 1986. Ecology and natural history of desert lizards. Princeton University Press
Robson M. A., Miles D. B. 2010. Locomotor performance and dominance in male tree lizards, Urosaurus ornatus. Funct Ecol, 14(3): 338–344
Rusch T. W., Sears M. W., Angilletta M. J. 2018. Lizards perceived abiotic and biotic stressors independently when competing for shade in terrestrial mesocosms. Horm and Behav, 106: 44–51
Shine R. 2003. Locomotor speeds of gravid lizards: placing ‘costs of reproduction’ within an ecological context. Funct Ecol, 17(4): 526–533
Sinclair B. J., Marshall K. E., Sewell M. A., Levesque D. L., Willett C. S., Slotsbo S., Dong Y. W., Harley C. D. G., Marshall D. J., Helmuth B. S., Huey R. B. 2016. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecol Lett, 19(11): 1372–1385
Shu L., Sun B. J., Du W. G. 2010. Effects of temperature and food availability on selected body temperature and locomotor performance of Plestiodon (Eumeces) chinensis (Scincidae). Anim Biol, 60(3): 337–347
Shurin J. B., Amarasekare P., Chase J. M., Holt R. D., Hoopes M. F., Leibold M. A. 2004. Alternative stable states and regional community structure. J Theor Biol, 227(3): 359–368
Sokolova I. M., Frederich M., Bagwe R., Lannig G., Sukhotin A. A. 2012. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Mar Environ Res, 79(4): 1–15
Sun B. J., Ma L., Li S. R., Williams C. M., Wang Y., Hao X., Du W. G. 2018. Phenology and the physiological niche are co-adapted in a desert dwelling lizard. Funct Ecol, 32: 2520–2530
Sun B. J., Tang W. Q., Zeng Z. G., Du W. G. 2014. The seasonal acclimatisation of locomotion in a terrestrial reptile, Plestiodon chinensis (Scincidae). Asian Herpetol Res, 5(3): 197–203
Sunday J. M., Bates A. E., Dulvy N. K. 2012. Thermal tolerance and the global redistribution of animals. Nat Clim Change, 2(9): 686–690
Wang Y., Zeng Z. G., Li S. R., Bi J. H., Du W. G. 2016. Low precipitation aggravates the impact of extreme high temperatures on lizard reproduction. Oecologia, 182(4): 961–971
White C. R. 2011. Allometric estimation of metabolic rates in animals. Comp Biochem Phys A, 158(3): 346–357
White C. R., Alton L. A., Frappell P. B. 2012. Metabolic cold adaptation in fishes occurs at the level of whole animal, mitochondria and enzyme. Proc Biol Sci, 279(1734): 1740–1747
White C. R., Kearney M. R. 2013. Determinants of inter-specific variation in basal metabolic rate. J Comp Physiol B, 183(1): 1–26
Wilkinson M., Grover M. J. 1996. Climate change and the threat from infection. Trends Microbiol, 4(9): 340–341
Wilson R. S. 2001. Geographic variation in thermal sensitivity of jumping performance in the frog Limnodynastes peronii. J Exp Biol, 204: 4227–4236
Xu X. F. 2001. Selected Body temperature, thermal tolerance and influence of temperature on food assimilation and locomotor performance in lacertid lizards,Eremias brenchleyi. Zool Res, 22(6): 443–448
Young K. M., Cramp R. L., White C. R., Franklin C. E. 2011. Influence of elevated temperature on metabolism during aestivation: implications for muscle disuse atrophy. J Exp Biol, 214(22): 3782–3789
?agar A., Carretero M. A., Margu? D., Sim?i? T., Vrezec A. 2018. A metabolic syndrome in terrestrial ectotherms with different elevational and distribution patterns. Ecography, 41(10): 1728–1739
?agar A., Carretero M. A., Osojnik N., Sillero N., Vrezec A. 2015. A place in the sun: interspecific interference affects thermoregulation in coexisting lizards. Behav Ecol Sociobi, 69(7): 1127–1137
Zamora-Camacho F. J., Reguera S., Rubi?o-Hispán M. V., Moreno-Rueda G. 2014. Effects of limb length, body Mass, gender, gravidity, and elevation on escape speed in the lizard Psammodromus algirus. Evol Biol, 41(4): 509–517
Zhang Y. P., Ji X. 2004. The thermal dependence of food assimilation and locomotor performance in southern grass lizards, Takydromus sexlineatus (Lacertidae) J Therm Biol, 29: 45–53
Zhao E. M., Zhao K. T., Zhou K. Y. 1999. Fauna Sinica Reptilia Vol. 2 Squamata. Beijing: Chinese Science Press

Memo

Memo:
-
Last Update: 2019-09-25