Qiong ZHANG,Xingzhi HAN,et al.Expression of HIF-1α and Its Target Genes in the Nanorana parkeri Heart: Implications for High Altitude Adaptation[J].Asian Herpetological Research(AHR),2016,7(1):12-20.[doi:10.16373/j.cnki.ahr.150046]
Click Copy

Expression of HIF-1α and Its Target Genes in the Nanorana parkeri Heart: Implications for High Altitude Adaptation
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

2016 VoI.7 No.1
Research Field:
Publishing date:


Expression of HIF-1α and Its Target Genes in the Nanorana parkeri Heart: Implications for High Altitude Adaptation
Qiong ZHANG1* Xingzhi HAN2 Yinzi YE3 Robert H. S. KRAUS45 Liqing FAN6 Le YANG7 and Yi TAO1
1 Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
2 College of Life Sciences, Harbin Normal University, Harbin 150025, Heilongjiang, China
3 College of Life Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
4 Department of Biology, University of Konstanz, Konstanz 78457, Germany
5 Max Planck Institute for Ornithology, Department of Migration and Immuno-Ecology, Am Obstberg 1, Radolfzell 78315, Germany
6 College of Agricultural and Animal Husbandry, Tibet University, Tibet 860000, China
7 Tibet Plateau Institute of Biology, Tibet 850001, China
Hypoxia cold-temperature ectothermic animals Nanorana parkeri high altitude vascular endothelial growth factor transferrins anura amphibia
Hypoxia-inducible factor 1 alpha (HIF-1α) and its target genes vascular endothelial growth factor (VEGF) and transferrins (TF) play an important role in native endothermic animals’ adaptation to the high altitude environments. For ectothermic animals – especially frogs – it remains undetermined whether HIF-1α and its target genes (VEGF and TF) play an important role in high altitude adaptation, too. In this study, we compared the gene sequences and expression of HIF-1α and its target genes (VEGF and TF) between three Nanorana parkeri populations from different altitudes (3008 m a.s.l., 3440 m a.s.l. and 4312 m a.s.l.). We observed that the cDNA sequences of HIF-1A exhibited high sequence similarity (99.38%) among the three altitudinally separated populations; but with increasing altitude, the expression of HIF-1A and its target genes (VEGF and TF) increased significantly. These results indicate that HIF-1α plays an important role in N. parkeri adaptation to the high altitude, similar to its role in endothermic animals.


Beall C. M., Decker M. J., Brittenham G. M., Kushner I., Gebremedhin A., Strohl K. P. 2002. An Ethiopian pattern of human adaptation to high-altitude hypoxia. Proc Natl Acad Sci USA, 99: 17215–17218
Bevins C. L., Zasloff M. 1990. Peptides from frog skin. Annu Rev Biochem, 59: 395–414
Berger L., Spear R., Hines H. B. Marantelli G., Hyatt A. D., McDonald K. R. 2004. Effect of season and temperature on mortality in amphibians due to chytridiomycosis. Aust Vet J, 82: 31–36
Bonin A., Taberlet P., Miaud C., Pompanon F. 2006. Explorative genome scan to detect candidate loci for adaptation along a gradient of altitude in the common frog (Rana temporaria). Mol Biol Evol, 23: 773–783
Breitman T. R., Collins S. J., Keene B. R. 1980. Replacement of serum by insulin and transferring supports growth and differentiation of the human promyelocytic cell line HL-60. Exp Cell Res, 126, 494–498
Cao Y. B., Chen X. Q., Wang S., Wang Y. X., Du J. Z. 2008. Evolution and regulation of the downstream gene of hypoxia-inducible factor-1 α in naked carp (Gymnocypris przewalskii) from lake Qinghai, China. J Mol Evol, 67: 570–580
Carey C. 2000. Infectious disease and worldwide declines of amphibian populations, with comments on emerging diseases in coral reef organisms and in humans. Environ Health Persp, 108: 143–150
Costanzo J. P., Lee R. E., Wright M. F. 1991. Effect of cooling rate on the survival of frozen wood frogs, Rana sylvatica. J Comp Physiol B, 161: 225–229
Cruz J. C., Reeves J. T., Russell B. E., Alexander A. F., Will D. H. 1980. Embryo transplanted calves: the pulmonary hypertensive trait is genetically transmitted. Proc Soc Exp Biol Med, 164: 142–145
Damert A., Ikeda E., Risau W. 1997. Activator-protein-1 binding potentiates the hypoxia-inducible factor-1-mediated hypoxia-induced transcriptional activation of vascular-endothelial growth factor expression in c6 glioma cells. Biochem J, 327: 419–423
Daszak P., Berger L., Cuningham A. A., Hyatt A., Green D. E., Spear R. 1999. Emerging infectious diseases and amphibian population declines. Emerg infect dis, 5: 735–748
Daszak P., Cunningham A. A., Hyatt A. D. 2003. Infectious disease and amphibian populations declines. Divers Distrib, 9: 141–150
Drew A., Allen E. J., Allen L. J. S. 2006. Analysis of climatic and geographic factors affecting the presence of chytridiomycosis in Australia. Dis Aquat Organ, 68: 245–250
Espinoza J. R., Alvarez G., Le?n-Velarde F., Preciado H. F. J., Macarlupu J., Rivera-Ch M., Rodriguez J., Favier J., Gimenez-Roqueplo A., Richalet J. 2014. Vascular Endothelial Growth Factor-A is associated with chronic mountain sickness in the Andean population. High Alt Med Biol, 15:146–154
Evans W. H., Wilson S. M., Bednarek J. M., Peterson E. A., Knight R. D., Mage M. G., McHugh L. 1989. Evidence for a factor in normal human serum that induces human neutrophilic granulocyte end-stage maturation in vitro. Leuk Res, 13: 673–682
Forsythe J. A., Jiang B. H., Iyer N. V., Agani F., Leung S. W., Koos R. D., Semenza G. L. 1996. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol, 16: 4604–4613
Ge R. L., Cai Q., Shen Y. Y., San A., Ma L., Zhang Y., Yi X., Chen Y., Yang L. F., Huang Y. 2013. Draft genome sequence of the Tibetan antelope. Nat Commun 4, 1858 | DOI: 10.1038/ncomms2860
Giordano F. J. 2005. Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest, 115: 500–508
Gracey A. Y., Troll J. V. Somero G. N. 2001. Hypoxia-induced gene expression profiling in the euryoxic fish Gillichthys mirabilis. Proc Natl Acad Sci USA, 98:1993–1998
Green D. E., Converse K. A., Schrader A. K. 2002 Epizootiology of sixty-four amphibian morbidity and mortality events in the USA, 1996-2001. Ann NY Acad Sci, 969: 323–339
Hu S. Q. 1987. Amphibia-reptilia in Tibet. Beijing: Science Press
Hutchison V. H., Haines H. B., Engbretson G. 1976. Aquatic life at high altitude: respiratory adaptations in the lake Titicaca frog, Telmatobius coleus. Respir Physiol, 27: 115–129
Kane N. C., Rieseberg L. H. 2007. Selective sweeps reveal candidate genes for adaptation to drought and salt tolerance in common sunflower, Helianthus annuus. Genetics, 175: 1823–1834
Knickerbocker D. L., Lutz P. L. 2001. Slow ATP loss and the defense of ion homeostasis in the anoxic frog brain. J Exp Biol, 204: 3547–3551
Li Q. F., Sun R. Y., Huang C. X., Wang Z. K., Liu X. T., Hou J. J., Liu J. S., Cai L. Q., Li N., Zhang S. Z., Wang Y. 2001. Cold adaptive thermogenesis in small mammals from different geographical zones of China. Comp Biochem Physiol A, 129: 949–961
Li H., Ren Y., Guo S., Cheng L., Wang D., Yang J., Chang Z., Zhao X. 2009. The protein level of hypoxia-inducible factor-1α is increased in the plateau pika (Ochotona curzoniae) inhabiting high altitudes. J Exp Zool, 311A: 134–141
Li H., Guo S., Ren Y., Wang D., Yu H., Li W., Zhao X., Chang Z. 2013. VEGF189 expression is highly related to adaptation of the plateau pika (Ochotona curzoniae) inhabiting high altitudes. High Alt Med Biol, 14: 395–404
Lip K., Brem F., Brenes R., Reeve J. D., Alford R. A. Voyles J., Carey C., Livo L., Pessier A. P., Collins J. P. 2006. Emerging infectious disease and the loss of biodiversity in a neotropical amphibian community. Proc Natl Acad Sci USA, 103: 3165–3170.
Livak K. J., Schmittgen T. D. 2001. Analysis of relative gene expression data using realtime quantitative PCR and the 2-△△CT Method. Methods, 25: 402–408
Lu Z. K., Zhai L., Wang H., Che Q., Wang D., Feng F., Zhao Z., Yu H. 2010. Novel families of antimicrobial peptides with multiple functions from skin of Xizang plateau frog, Nanorana parkeri. Biochimie, 92: 475–481
Ma X. Y., Lu X., Meril? J. 2009. Altitudinal decline of body size in a Tibetan frog. J Zool, 279: 364–371
Ma X. Y., Lu X. 2009. Sexual size dimorphism in relation to age and growth based on skeletochronological analysis in a Tibetan frog. Amphib Reptil, 30: 351–359
Ma X. Y., Lu X. 2010. Annual cycle of reproductive organs in a Tibetan frog, Nanorana parkeri. Anim Biol, 60: 259–271
Mohd-Padil H., Mohd-Adnan A, Gabald?n T. 2012. Phylogenetic analyses uncover a novel clade of transferrin in nonmammalian vertebrates. Mol Biol Evol, doi:10.1093/molbev/mss325
Moore L. G., Armaza F., Villena M., Vargas E. 2000. Comparative aspects of high-altitude adaptation in human populations. Adv Exp Med Biol, 475: 45–62
Morabito M. A., Moczydlowski E. 1994. Molecular cloning of bullfrog saxiphilin: a unique relative of the transferrin family that binds saxitoxin. Proc Natl Acad Sci USA, 91: 2478–2482
Moskaitis J. E., Pastori R. L., Schoenberg D. R. 1990. The nucleotide sequence of Xenopus laevis transferrin mRNA. Nucleic Acids Res, 18: 6135
Nor J. E., Christensen J., Mooney D. J., Polverini P. J. 1999. Vascular endothelial growth factor (VEGF)-mediated angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl-2 expression. Am J Pathol, 154: 375–384
Qiu Q., Zhang G., Ma T., Qian W., Wang J., Ye Z., Cao C., Hu Q., Kim J., Larkin D. M., Auvil L., Capitanu B., Ma J., Lewin H. A., Qian X., Lang Y., Zhou R., Wang L., Wang K., Xia J., Liao S., Pan S., Lu X., Hou H., Wang Y., Zang X., Yin Y., Ma H., Zhang J., Wang Z., Zhang Y., Zhang D., Yonezawa T., Hasegawa M., Zhong Y., Liu W., Zhang Y., Huang Z., Zhang S., Long R., Yang H., Wang J., Lenstra J. A., Cooper D. N., Wu Y., Wang J., Shi P., Wang J., Liu J. 2012. The yak genome and adaptation to life at high altitude. Nature Genet, 44: 946–949
Rissane E., Tranberg H. K., Sollid J., Nilsson G. E., Nikinmaa M. 2006. Temperature regulates hypoxia-inducible factor-1 (HIF-1) in a poikilothermic vertebrate, crucian carp (Carassius carassius). J Exp Biol, 209: 994–1003
Rose M. R. 2001. Adaptation. In Levin RA (Eds), Encyclopedia of Biodiversity. San Diego: Academic Press: 17–23
Sahoo P. K., Mohanty B. R., Kumari J., Barat A., Sarangi N. 2009. Cloning, nucleotide sequence and phylogenetic analyses, and tissue-specific expression of the transferrin gene in Cirrhinus mrigala infected with Aeromonas hydrophila. Comp Immunol Microb, 32: 527–537
Simonson T. S., Yang Y., Huff C. D., Yun H., Qin G., Witherspoon D. J., Bai Z., Lorenzo F. R., Xing J., Jorde L. B., Prchal J. T., Ge R. L. 2010. Genetic evidence for high-altitude adaptation in Tibet. Science, 329: 72–75
Soitamo A. J., Rabergh C. M., Gassmann M., Sistonen L., Nikinmaa M. 2001. Characterization of a hypoxia-inducible factor (HIF-1α) from rainbow trout. Accumulation of protein occurs at normal venous oxygen tension. J Biol Chem, 276: 19699–19705
Stafford J. L., Belosevic M. 2003. Transferrin and innate immune response of fish: identification of a novel mechanism of macrophage activation. Dev Comp Immunol, 27: 539–554
Stewart E. R., Reese S. A., Ultsh G. R. 2004. The physiology of hibernation in Canadian leopard frogs (Rana pipiens) and bullfrogs (Rana catesbeiana). Physio Biochem Zool, 77: 65–73
Sun Y. B., Xiong Z. J., Xiang X. Y., Liu S. P., Zhou W. W., Tu X. L., Zhong L., Wang L., Wu D. D., Zhang B. L., Zhu C. L., Yang M. M., Chen H. M., Li F., Zhou L., Feng S. H., Huang C., Zhang G. J., Irwin D., Hillis D. M., Murphy R. W., Yang H. M., Che J., Wang J., Zhang Y. P. 2014. Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes. Proc Natl Acad Sci USA, 112: E1257–E1262
Tacchini L., Bianchi L., Bernelli-Zazzera A., Cairo G. 1999. Transferrin Receptor Induction by Hypoxia: HIF-1-Mediated transcriptional activation and cell-specific post-transcriptional regulation. J Biol Chem, 274: 24142–24146
Weber R. E., Ostojic H., Fago A., Dewilde S., Van Hauwaert M. L., Moens L., Monge C. 2002. Novel mechanism for high-altitude adaptation in hemoglobin of the Andean frog Telmatobius peruvianus. Am J of Physiol-Regul Integr Comp Physiol, 283: 1052–1060
Wenger R. H., Gassmann M. 1997. Oxygen (es) and the hypoxia-inducible factor-1. Biol Chem, 378: 609–616
William G. K., Peter J. R. 2008. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell, 30: 393–402
Wolf J. B. W. 2013. Principles of transcriptome analysis and gene expression quantification: an RNA-seq tutorial. Mol Ecol Resour, 13: 559–572
Woodhams D. C., Alford R. A. 2005. Ecology of chytridiomycosis in rainforest stream frog assemblages of tropical Queensland. Conserv Biol, 19: 1449–1459
Wu T., Kayser B. 2006. High altitude adaptation in Tibetans. High Alt Med Biol, 7: 193–208
Xue Y., Petrovic N., Cao R., Larsson O., Lim S., Chen S., Feldmann H. M., Liang Z. Zhu Z., Nedergaard J., Cannon B., Cao Y. 2009. Hypoxia-independent angiogenesis in adipose tissues during cold acclimation. Cell Metabol, 9: 99–109
Zhang L. X., Ma X. Y., Jiang J. P., Lu X. 2012. Stronger condition dependence in female size explains altitudinal variation in sexual size dimorphism of a Tibetan frog. Biol J Linnean Soc, 107: 558–565


Last Update: 2016-03-30