Xueyun FENG,Wei CHEN,Junhua HU and Jianping JIANG.Variation and Sexual Dimorphism of Body Size in the Plateau Brown Frog along an Altitudinal Gradient[J].Asian Herpetological Research(AHR),2015,6(4):291-297.[doi:10.16373/j.cnki.ahr.150027]
Click Copy

Variation and Sexual Dimorphism of Body Size in the Plateau Brown Frog along an Altitudinal Gradient
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

2015 VoI.6 No.4
Research Field:
Original Article
Publishing date:


Variation and Sexual Dimorphism of Body Size in the Plateau Brown Frog along an Altitudinal Gradient
Xueyun FENG12 Wei CHEN3 Junhua HU1* and Jianping JIANG1*
1 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
2 University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
3 Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China
Altitudinal gradient Bergmann’s rule body size variation Qinghai-Tibetan Plateau Rana kukunoris Rensch’s rule sexual size dimorphism
Variation in body size and sexual size dimorphism (SSD) can have important consequences for animal ecology, behavior, population dynamics and the evolution of life-history traits. Organisms are expected to be larger in colder climate (i.e., Bergmann’s rule) and SSD varies with body size (i.e., Rensch’s rule). However, the underlying mechanisms are still elusive. The plateau brown frog (Rana kukunoris), a medium-sized anuran species with female-biased SSD, is endemic to the Qinghai-Tibetan Plateau (QTP). From 1797 m (Maoxiang’ping) to 3453 m (Heihe’qiao) in the eastern margin of the QTP, we surveyed 10 populations of R. kukunoris and collected phalanges and snout vent length (SVL) data for 258 adult individuals (199 males versus 59 females). Based on these data, we explored how body size and SSD varying along the altitudinal gradient and examined the corresponding effects of temperature. We found body size to be larger at higher altitude for males but not for females, with likely effects from the temperature on the variation in male body size. Sex differences in growth rates may be the main cause of the variation in SSD. Our results suggested that only males follow the Bergmann’s rule and variation in SSD of R. kukunoris do not support the Rensch’s rule and its inverse. Therefore, the variations of body size can be different between sexes and the applicability of both Bergmann’s rule and Rensch’s rule should depend on species and environment where they live.


Andersson M. B. 1994. Sexual selection. Princeton University Press
Ashton K. G. 2002. Do amphibians follow Bergmann’s rule? Can J Zoo, 80(4): 708–716
Ashton K. G., Feldman C. R. 2003. Bergmann’s rule in nonavian reptiles: Turtles follow it, lizards and snakes reverse it. Evolution, 57(5): 1151–1163
Ashton K. G., Tracy M. C., de Queiroz A. 2000. Is Bergmann’s rule valid for mammals? Am Nat, 156(4): 390–415
Bergmann C. 1848. ?ber die Verh?ltnisse der W?rme?konomie der Thiere zu ihrer Gr?sse.
Blackburn T. M., Gaston K. J., Loder N. 1999. Geographic gradients in body size: A clarification of Bergmann’s rule. Divers Distrib, 5(4): 165–174
Bohonak A. J., van der Linde K. 2004. RMA: Software for reduced major axis regression, Java version. Website: http://www.kimvdlinde com/professional/rma html:
Chen W., Tang Z., Fan X., Wang Y., Pike D. 2013a. Maternal investment increases with altitude in a frog on the Tibetan Plateau. J Evol Biol, 26(12): 2710–2715
Chen W., Wang X., Fan X. 2013b. Do anurans living in higher altitudes have higher prehibernation energy storage? Investigations from a high-altitude frog. Herpetol J, 23(1): 45–49
Chen W., Yu T. L., Lu X. 2011. Age and body size of Rana kukunoris, a high-elevation frog native to the Tibetan plateau. Herpetol J, 21(2): 149–151
Chown S. L., Gaston K. J. 2010. Body size variation in insects: A macroecological perspective. Biol Rev, 85(1): 139–169
Cohen M., Alford R. 1993. Growth, survival and activity patterns of recently metamorphosed Bufo marinus. Wildlife Res, 20(1): 1–13
De Lisle S. P., Rowe L. 2013. Correlated evolution of allometry and sexual dimorphism across higher taxa. Am Nat, 182(5): 630–639
Fairbairn D. J. 1997. Allometry for sexual size dimorphism: Pattern and process in the coevolution of body size in males and females. Annu Rev Ecol Syst, 28: 659–687
Fairbairn D. J., Blanckenhorn W. U., Székely T. 2007. Sex, size, and gender roles: Evolutionary studies of sexual size dimorphism. Oxford: Oxford University Press
Fei L., Hu S., Ye C., Huang Y. 2009. Fauna Sinica, Amphibia, Vol. 3. Anura Ranidae. Beijing: Science Press
Gardner J. L., Kearney M. R., Peters A., Joseph L., Heinsohn R. 2011. Mechanisms and consequences of changing body size: Reply to Bickford et al. and McCauley and Mabry. Trends Ecol Evol, 26(11): 555–556
Herczeg G., Gonda A., Meril? J. 2010. Rensch’s rule inverted female driven gigantism in nine-spined stickleback Pungitius pungitius. J Anim Ecol, 79(3): 581–588
Hijmans R. J., Cameron S. E., Parra J. L., Jones P. G., Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol, 25(15): 1965–1978
Hsu F. H., Hsieh Y. S., Wu S. H., Kam Y. C. 2014. Altitudinal variation in body size and age structure of the Sauter’s frog Rana sauteri in Taiwan. Zool Stud, 53(1): 62
Iturra Cid M., Ortiz J. C., Ibargüengoytía N. R. 2010. Age, size, and growth of the Chilean frog Pleurodema thaul (Anura: Leiuperidae): Latitudinal and altitudinal effects. Copeia, 2010(4): 609–617
Lai Y. C., Lee T. H., Kam Y. C. 2005. A skeletochronological study on a subtropical, riparian ranid (Rana swinhoana) from different elevations in Taiwan. Zool Sci, 22(6): 653–658
Laugen A. T., Laurila A., J?nsson I., S?derman F., Meril? J. 2005. Do common frogs (Rana temporaria) follow Bergmann’s rule? Evol Ecol Res, 7(5): 717–731
Laugen A. T., Laurila A., Meril? J. 2002. Maternal and genetic contributions to geographical variation in Rana temporaria larval life-history traits. Biol J Linn Soc, 76(1): 61–70
Laurila A., Pakkasmaa S., Crochet P. A., Meril? J. 2002. Predator-induced plasticity in early life history and morphology in two anuran amphibians. Oecologia, 132(4): 524–530
Liao W. B., Liu W. C., Meril? J. 2014. Andrew meets Rensch: Sexual size dimorphism and the inverse of Rensch’s rule in Andrew’s toad (Bufo andrewsi). Oecologia, 177(1): 389–399
Liao W. B., Lu X. 2010. Age structure and body size of the Chuanxi tree frog Hyla annectans chuanxiensis from two different elevations in Sichuan (China). Zool Anz, 248(4): 255–263
Liao W. B., Zeng Y., Zhou C. Q., Jehle R. 2013. Sexual size dimorphism in anurans fails to obey Rensch’s rule. Front Zool, 10(1): 1–10
Monnet J. M., Cherry M. I. 2002. Sexual size dimorphism in anurans. P Roy Soc Lond B-Biol Sci, 269(1507): 2301–2307
Morrison C., Hero J. M., Browning J. 2004. Altitudinal variation in the age at maturity, longevity, and reproductive lifespan of anurans in subtropical Queensland. Herpetologica, 60(1): 34–44
Morrison C., Hero J. M. 2003. Geographic variation in life history characteristics of amphibians: A review. J Anim Ecol, 72(2): 270–279
Olalla Tárraga M. ?., Rodríguez M. ?. 2007. Energy and interspecific body size patterns of amphibian faunas in Europe and North America: Anurans follow Bergmann’s rule, urodeles its converse. Global Ecol Biogeogr, 16(5): 606–617
Rensch B. 1950. Die Abh?ngigkeit der relativen Sexualdifferenz von der K?rpergr?sse. Bonner Zoologische Beitr?ge, 1: 58–69
Roff D. A. 2002. Life history evolution. Sinauer Associates Sunderland
Rozenblut B., Ogielska M. 2005. Development and growth of long bones in European water frogs (Amphibia: Anura: Ranidae), with remarks on age determination. J Morphol, 265(3): 304–317
Shine R. 1979. Sexual selection and sexual dimorphism in the Amphibia. Copeia: 297–306
Sinsch U., Marangoni F., Oromi N., Leskovar C., Sanuy D., Tejedo M. 2010. Proximate mechanisms determining size variability in natterjack toads. J Zool, 281(4): 272–281
Smith R. J. 1999. Statistics of sexual size dimorphism. Journal of Human Evolution, 36(4): 423–459
Sokal R. R., Rohlf F. J. 1995. Biometry: The principles and practice of statistics in biological research. New York: State University of New Yorkat Stony Brook
Stevenson R. 1985. Body size and limits to the daily range of body temperature in terrestrial ectotherms. Am Nat: 102–117
Stuart Fox D. 2009. A test of Rensch’s rule in dwarf chameleons (Bradypodion spp.), a group with female-biased sexual size dimorphism. Evol Ecol, 23(3): 425–433
Székely T., Reynolds J. D., Figuerola J. 2000. Sexual size dimorphism in shorebirds, gulls, and alcids: The influence of sexual and natural selection. Evolution, 54(4): 1404–1413
Teder T., Tammaru T. 2005. Sexual size dimorphism within species increases with body size in insects. Oikos, 108(2): 321–334
Wake D. B., Castanet J. 1995. A skeletochronological study of growth and age in relation to adult size in Batrachoseps attenuatus. J Herpetol: 60–65
Yom Tov Y. 2001. Global warming and body mass decline in Israeli passerine birds. P Roy Soc Lond B-Biol Sci, 268(1470): 947–952


Last Update: 2016-01-25