Wei CHEN,Tianpei GUAN,Lina REN,et al.Prehibernation Energy Storage in Heilongjiang Brown Frogs (Rana amurensis) from Five Populations in North China[J].Asian Herpetological Research(AHR),2015,6(1):45-50.[doi:10.16373/j.cnki.ahr.140036]
Click Copy

Prehibernation Energy Storage in Heilongjiang Brown Frogs (Rana amurensis) from Five Populations in North China
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

2015 VoI.6 No.1
Research Field:
Original Article
Publishing date:


Prehibernation Energy Storage in Heilongjiang Brown Frogs (Rana amurensis) from Five Populations in North China
Wei CHEN1* Tianpei GUAN1 Lina REN2 Dujuan HE2 Ying WANG2 and Xin LU3
1 Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, 621000, China
2 College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, 621000, China
3 Department of Zoology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
energy storage pre-hibernation Rana amurensis sexual differences
Energy storage is an important component in the life history of species that directly influences survival and reproduction. The energetic demands of amphibian reproduction can differ between the sexes, with environmental conditions, reproductive pattern or process of the species, and depending upon the timing of breeding, and the reproductive season for a species. Surprisingly, comparative studies of pre-hibernation energy storage for anuran populations from different latitudes are relatively few in Asia, especially in China. Here we investigated the patterns of pre-hibernation energy storage of Heilongjiang brown frogs Rana amurensis, based on five populations along a finely latitudinal gradient in north China (40.7–43.7°N). We found that pre-hibernation energy storage of the frogs did not show a clear latitudinal cline, but differed strongly between the sexes, with males depositing more energy reserves into the muscle and liver, whereas females accumulate more energy in the gonads. The sexual differences in energy storage may result from differential timing of energy allocation for reproduction.


Boutilier R. G. 2001. Mechanisms of metabolic defense against hypoxia in hibernating frogs. Resp Physiol, 128: 365–377
Chen W., Lu X. 2011. Age and body size of Rana amurensis from northeastern China. Curr Zool, 57: 781?784
Chen W., Wang X. Y., Fan X. G. 2013. Do anurans living in higher altitudes have higher prehibernation energy storage? Investigations from a high-altitude frog. Herpetol J, 23: 45–49
Chen W., Zhang L. X., Lu X. 2011. Higher pre-hibernation energy storage in anurans from cold environments: A case study on temperate frog Rana chensinensis along broad latitudinal and altitudinal gradients. Ann Zool Fenn, 48: 214?220
Costanzo J. P., Amaral M. C. F., Rosendale A. J., Lee R. E. J. 2013. Hibernation physiology, freezing adaptation and extreme freeze tolerance in a northern population of the wood frog. J Exp Biol, 216: 3461?3473
Delgado M. J., Gutierrez P., Alonso-Bedate M. 1990. Annual ovarian cycle and plasma levels of 17 betaestradiol in the frog Rana perezi. Physiol Zool, 63: 373?387
Díaz-Paéz H., Ortiz J. C. 2001. Description of the reproductive cycle of Pleurodema thaul Anura, Leptodactylidae. Amphibia-Reptilia, 22: 431?445
Donohoe P. H., West T. G., Boutilier R. G. 1998. Respiratory, metabolic, and acid-base correlates of aerobic metabolic rate reduction in overwintering frogs. Am J Physiol, 274: 704?710
Drent R. H., Daan S. 1980. The prudent parent: energetic adjustments in avian breeding. Ardea, 68: 225?252
Elmberg J. 1991. Ovarian cyclicity and fecundity in boreal common frogs Rana temporaria L. along a climatic gradient. Funct Ecol, 5: 340?350
Fei L., Ye C. Y., Jiang J. P. 2010. Colored Atlas of Chinese Amphibians. Chengdu, China: Sichuan Publishing House of Science and Technology
Fitzpatrick L. C. 1976. Life history patterns and utilization of lipids for energy in amphibians. Am Zool, 16: 725?732
Girish S., Saidapur S. K. 2000. Interrelationship between food availability, fat body, and ovarian cycles in the frog, Rana tigrina, with a discussion of the role of fat body in anuran reproduction. J Exp Zool, 286: 487?493
Hemelaar A. S. M. 1988. Age, growth and other population characteristics of Bufo bufo from different latitudes and altitudes. J Herpetol, 22: 369?388
Irwin J. T., Lee J. R. E. 2003. Geographic variation in energy storage and physiological responses to freezing in the gray tree frogs Hyla versicolor and H. chrysoscelis. J Exp Biol, 206: 2859?2867
Jackson D. C., Ultsch G. R. 2010. Physiology of hibernation under the ice by turtles and frogs. J Exp Zool Part A, 313: 311–327
J?nsson I., Herczeg G., O’Hara R., S?derman F., ter Schure A., Larsson P., Meril? J. 2009. Sexual patterns of prebreeding energy reserves in the common frog Rana temporaria along a latitudinal gradient. Ecography, 32: 831–839
J?nsson K. I. 1997. Capital and income breeding as alternative tactics of resource use in reproduction. Oikos, 78: 57?66
J?rgensen C. B. 1981. Ovarian cycle in a temperate frog, Rana temporaria, with special reference to factors determining number and size of egg. J Zool, 195: 449?458
J?rgensen C. B. 1992. Growth and reproduction. In: Feder M. E. and Burggren W. W. (Eds.), Environmental physiology of the amphibians. University of Chicago Press, 439?466
Komoroski M. J., Nagle R. D., Congdon J. D. 1998. Relationships of lipids to ovum size in amphibians. Physiol Zool, 71: 633?641
Kuzmin S. L. 1999. The Amphibians of the Former Soviet Union. Moscow: Pensoft, Sofia.
Lu X. 2004. Annual cycle of nutritional organ mass in a temperate-zone anuran, Rana chensinensis, from northern China. Herpetol J, 14: 9–12
Lu X., Li B., Li Y., Ma X. Y., Fellers G. M. 2008. Pre-hibernation energy reserves in a temperate anuran, Rana chensinensis, along a relatively fine elevational gradient. Herpetol J, 18: 97?102
Packard G. C., Boardman T. J. 1999. The use of percentages and size-specific indices to normalize physiological data for variation in body size: wasted time, wasted effort? Comp Biochem Phy A, 122: 37–44
Pasanen S., Koskela P. 1974. Seasonal and age variation in the metabolism of the common frog, Rana temporaria L. in northern Finland. Comp Biochem Phy A, 47: 635?654
Pope K. L., Matthews K. R. 2002. Influence of anuran prey on the condition and distribution of Rana muscosa in the Sierra Nevada. Herpetologica, 58: 354?363
Roff D. A. 2002. The evolution of life histories. Sunderland, MA: Sinauer Associates.
Solomonova T. N., Sedalishchev V. T., Odnokurtsev V. A. 2011. The Siberian tree frog (Rana amurensis Bulenger, 1886) in Yakutia. Contemp Probl Ecol, 4: 69?73
Tattersall G. J., Ultsch G. R. 2008. Physiological ecology of aquatic overwintering in ranid frogs. Biol Rev, 83: 119–140
Villecco E. I., Aybar M. J., Sánchez R. A. N., Sánchez S. S. 1999. Comparative study of vitellogenesis in the anuran amphibians Ceratophrys cranwelli (Leptodactilidae) and Bufo arenarum (Bufonidae). Zygote, 7: 11–19
Wells K. D. 2007. The ecology and behavior of amphibians. Chicago: University of Chicago Press


Last Update: 2016-01-25