Yuchi ZHENG,Rui PENG,Robert W. MURPHY,et al.Matrilineal Genealogy of Hynobius (Caudata: Hynobiidae) and a Temporal Perspective on Varying Levels of Diversity among Lineages of Salamanders on the Japanese Islands[J].Asian Herpetological Research(AHR),2012,3(4):288-302.[doi:10.3724/SP.J.1245.2012.00288]
Click Copy

Matrilineal Genealogy of Hynobius (Caudata: Hynobiidae) and a Temporal Perspective on Varying Levels of Diversity among Lineages of Salamanders on the Japanese Islands
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

2012 VoI.3 No.4
Research Field:
Original Article
Publishing date:


Matrilineal Genealogy of Hynobius (Caudata: Hynobiidae) and a Temporal Perspective on Varying Levels of Diversity among Lineages of Salamanders on the Japanese Islands
Yuchi ZHENG1* Rui PENG1 2 Robert W. MURPHY3 4 Masaki KURO-O5 Lujun HU1 and Xiaomao ZENG1*
1 Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
2 Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China
3 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
4 Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, 100 Queen’s Park, Toronto, ON M5S 2C6, Canada
5 Department of Biology, Hirosaki University, Hirosaki 036-8561, Japan
tempo of diversification salamander Japanese Archipelago Hynobius cryptic species northern glacial refugium
Previous work found that different Japanese lineages of salamanders had quite different levels of species and genetic diversity. Lineages vary from having one to several species and the extent of genetic variation among lineages differs substantially. Most speciose, genus Hynobius contains 18 species and several potential cryptic species. We explore genetic diversity in this genus by combining comprehensive sampling and mitochondrial DNA sequences. Based on this and previous analyses of salamanders, relative times of divergence are employed to evaluate the relationship between age and diversity among the four major lineages whose distributions broadly overlap on the islands. For Hynobius, our analyses are congruent with the previously reported high level of cryptic diversity in morphology and allozymes, particularly in species composed of non-sister matrilines. Both species and genetic diversity correlate with the relative ages of the lineages. This correlation indicates that the variation in levels of diversity can be explained, to a considerable extent, by the hypothesis that older insular lineages have accumulated greater diversity. In addition to the Korean Peninsula, H. leechii might have survived in another Pleistocene glacial refugium north of the peninsula and this refugium provided a source of colonization after the last glacial maximum.


Anderson J. S. 2008. Focal review: The origin(s) of modern amphibians. Evol Biol, 35: 231–247
Anderson J. S. 2012. Fossils, molecules, divergence times, and the origin of Salamandroidea. Proc Natl Acad Sci USA, 109: 5557–5558
Arbogast B. S., Edwards S. V., Wakeley J., Beerli P., Slowinski J. B. 2002. Estimating divergence times from molecular data on phylogenetic and population genetic timescales. Annu Rev Ecol Syst, 33: 707–740
Baek H. J., Lee M. Y., Lee H., Min M. S. 2011. Mitochondrial DNA data unveil highly divergent populations within the genus Hynobius (Caudata: Hynobiidae) in South Korea. Mol Cells, 31: 105–112
Bickford D., Lohman D. J., Sodhi N. S., Ng P. K. L., Meier R., Winker K., Ingram K. K., Das I. 2007. Cryptic species as a window on diversity and conservation. Trends Ecol Evol, 22: 148–155
Borges P. A. V., Brown V. K. 1999. Effect of island geological age on the arthropod species richness of Azorean pastures. Biol J Linn Soc, 66: 373–410
Canestrelli D., Cimmaruta R., Costantini V., Nascetti G. 2006. Genetic diversity and phylogeography of the Apennine yellow-bellied toad Bombina pachypus, with implications for conservation. Mol Ecol, 15: 3741–3754
Cannatella D. C., Vieites D. R., Zhang P., Wake M. H., Wake D. B. 2009. Amphibians (Lissamphibia). In Hedges S. B., Kumar S. (Eds.), The Timetree of Life. New York: Oxford University Press, 353–356 pp
Cannone J. J., Subramanian S., Schnare M. N., Collett J. R., D’Souza L. M., Du Y., Feng B., Lin N., Madabusi L. V., Muller K. M., Pande N., Shang Z., Yu N., Gutell R. R. 2002. The comparative RNA web (CRW) site: An online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinform, 3: 2
Clement M., Posada D., Crandall K. A. 2000. TCS: A computer program to estimate gene genealogies. Mol Ecol, 9: 1657–1660
Donald K. M., Kennedy M., Spencer H. G. 2005. The phylogeny and taxonomy of austral monodontine topshells (Mollusca: Gastropoda: Trochidae), inferred from DNA sequences. Mol Phylogenet Evol, 37: 474–483
Donoghue M. J. 2008. A phylogenetic perspective on the distribution of plant diversity. Proc Natl Acad Sci USA, 105: 11549–11555
Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39: 783–791
Fischer A. G. 1960. Latitudinal variations in organic diversity. Evolution, 14: 64–81
Fouquet A., Gilles A., Vences M., Marty C., Blanc M., Gemmell N. J. 2007. Underestimation of species richness in Neotropical frogs revealed by mtDNA analyses. PLoS One, 10: e1109
Frost D. R. 2011. Amphibian species of the world: An online reference. Version 5.5 (31 January, 2011). Electronic database accessible at http://research.amnh.org/vz/herpetology/amphibia/. American Museum of Natural History, New York, USA
Gao Y., Wan S. Y., Luo J., Murphy R. W., Du R., Wu S. F., Zhu C. L., Li Y., Poyarkov A. D., Nguyen S. N., Luan P. T., Zhang Y. P. 2012. Quaternary palaeoenvironmental oscillations drove the evolution of the Eurasian Carassius auratus complex (Cypriniformes, Cyprinidae). J Biogeogr, 39: 2264–2278
Hawkins B. A., Diniz-Filho J. A. F., Jaramillo C. A., Soeller S. A. 2006. Post-Eocene climate change, niche conservatism, and the latitudinal diversity gradient of New World birds. J Biogeogr, 33: 770–780
Hawkins B. A., Diniz-Filho J. A. F., Jaramillo C. A., Soeller S. A. 2007. Climate, niche conservatism, and the global bird diversity gradient. Am Nat, 170: S16–S27
Hawkins B. A., Diniz-Filho J. A. F., Soeller S. A. 2005. Water links the historical and contemporary components of the Australian bird diversity gradient. J Biogeogr, 32: 1035–1042
Hewitt G. M. 2000. The genetic legacy of the Quaternary ice ages. Nature, 405: 907–913
IUCN 2011. IUCN Red List of Threatened Species. Version 2011.2.
Jetz W., Fine P. V. A. 2012. Global gradients in vertebrate diversity predicted by historical area-productivity dynamics and contemporary environment. PLoS Biol, 10: e1001292
Kaliontzopoulou A., Pinho C., Harris D. J., Carretero M. A. 2011. When cryptic diversity blurs the picture: A cautionary tale from Iberian and North African Podarcis wall lizards. Biol J Linn Soc, 103: 779–800
Kishino H., Thorne J. L., Bruno W. J. 2001. Performance of a divergence time estimation method under a probabilistic model of rate evolution. Mol Biol Evol, 18: 352–361
Kong W. S. 2000. Vegetational history of the Korean Peninsula. Global Ecol Biogeogr, 9: 391–402
Kozak K. H., Wiens J. J. 2010. Niche conservatism drives elevational diversity patterns in Appalachian salamanders. Am Nat, 176: 40–54
Kozak K. H., Wiens J. J. 2012. Phylogeny, ecology, and the origins of climate-richness relationships. Ecology, 93: S167–S181
Lai J. S., Lue K. Y. 2008. Two new Hynobius (Caudata: Hynobiidae) salamanders from Taiwan. Herpetologica, 64: 63–80
Lee M. Y., Lissovsky A. A., Park S. K., Obolenskaya E. V., Dokuchaev N. E., Zhang Y., Yu L., Kim Y. J., Voloshina I., Myslenkov A., Choi T. Y., Min M. S., Lee H. 2008. Mitochondrial cytochrome b sequence variations and population structure of Siberian chipmunk (Tamias sibiricus) in Northeastern Asia and population substructure in South Korea. Mol Cells, 26: 566–575
Li J., Fu C., Lei G. 2011. Biogeographical consequences of Cenozoic tectonic events within East Asian margins: A case study of Hynobius biogeography. PLoS One, 6: e21506
Lowe T. M., Eddy S. R. 1997. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res, 25: 955–964
Maruyama S., Isozaki Y., Kimura G., Terabayashi M. 1997. Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750 Ma to the present. Island Arc, 6: 121–142
Matsui M., Nishikawa K., Utsunomiya T., Tanabe S. 2006. Geographic allozyme variation in the Japanese clouded salamander, Hynobius nebulosus (Amphibia: Urodela). Biol J Linn Soc, 89: 311–330
Matsui M., Tominaga A., Hayashi T., Misawa Y., Tanabe S. 2007. Phylogenetic relationships and phylogeography of Hynobius tokyoensis (Amphibia: Caudata) using complete sequences of cytochrome b and control region genes of mitochondrial DNA. Mol Phylogenet Evol, 44: 204–216
Matsui M., Tominaga A., Liu W. Z., Tanaka-Ueno T. 2008. Reduced genetic variation in the Japanese giant salamander, Andrias japonicus (Amphibia: Caudata). Mol Phylogenet Evol, 49: 318–326
Miller M. A., Pfeiffer W., Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), 14 November 2010, New Orleans, LA, 1–8 pp
Mueller R. L., Macey J. R., Jaekel M., Wake D. B., Boore J. L. 2004. Morphological homoplasy, life history evolution, and historical biogeography of plethodontid salamanders inferred from complete mitochondrial genomes. Proc Natl Acad Sci USA, 101: 13820–13825
Murphy R. W., Fu J., Upton D. E., De Lema T., Zhao E. M. 2000. Genetic variability among endangered Chinese giant salamanders, Andrias davidianus. Mol Ecol, 9: 1539–1547
Murphy R. W., Méndez de la Cruz F. R. 2010. The herpetofauna of Baja California and its associated islands: A conservation assessment and priorities. In Wilson L. D., Townsend J. H., Johnson J. D. (Eds.), Conservation of Mesoamerican Amphibians and Reptiles. Eagle Mountain: Eagle Mountain Publishing, 238–273 pp
Nei M., Kumar S. 2000. Molecular evolution and phylogenetics. Oxford: Oxford University Press, 40–41 pp
Nishikawa K., Jiang J. P., Matsui M., Mo Y. M., Chen X. H., Kim J. B., Tominaga A., Yoshikawa N. 2010. Invalidity of Hynobius yunanicus and molecular phylogeny of Hynobius salamander from continental China (Urodela, Hynobiidae). Zootaxa, 2426: 65–67
Nishikawa K., Matsui M., Tanabe S., Sato S. 2007. Morphological and allozymic variation in Hynobius boulengeri and H. stejnegeri (Amphibia: Urodela: Hynobiidae). Zool Sci, 24: 752–766
Okada Y. 1927. A study on the distribution of tailless batrachians of Japan. Annot Zool Japon, 11: 137–143
Olsson U., Alstr?m P., Ericson P. G. P., Sundberg P. 2005. Non-monophyletic taxa and cryptic species—evidence from a molecular phylogeny of leaf-warblers (Phylloscopus, Aves). Mol Phylogenet Evol, 36: 261–276
Parra-Olea G., Wake D. B. 2001. Extreme morphological and ecological homoplasy in tropical salamanders. Proc Natl Acad Sci USA, 98: 7888–7891
Pearson R. G. 2006. Climate change and the migration capacity of species. Trends Ecol Evol, 21: 111–113
Peng R., Zhang P., Xiong J. L., Gu H. F., Zeng X. M., Zou F. D. 2010. Rediscovery of Protohynobius puxiongensis (Caudata: Hynobiidae) and its phylogenetic position based on complete mitochondrial genomes. Mol Phylogenet Evol, 56: 252–258
Posada D. 2008. jModelTest: Phylogenetic model averaging. Mol Biol Evol, 25: 1253–1256
Posada D., Buckley T. R. 2004. Model selection and model averaging in phylogenetics: Advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol, 53: 793–808
Poyarkov N. A., Che J., Min M. S., Kuro-o M., Yan F., Li C., Iizuka K., Vieites D. R. 2012. Review of the systematics, morphology and distribution of Asian Clawed Salamanders, genus Onychodactylus (Amphibia, Caudata: Hynobiidae), with the description of four new species. Zootaxa, 3465: 1–106
Poyarkov N. A., Kuzmin S. L. 2008. Phylogeography of the Siberian newt Salamandrella keyserlingii by mitochondrial DNA sequence analysis. Rus J Genet, 44: 948–958
Provan J., Bennett K. D. 2008. Phylogeographic insights into cryptic glacial refugia. Trends Ecol Evol, 23: 564–571
Pyron R. A., Burbrink F. T. 2009. Can the tropical conservatism hypothesis explain temperate species richness patterns? An inverse latitudinal biodiversity gradient in the New World snake tribe Lampropeltini. Global Ecol Biogeogr, 18: 406–415
Rabosky D. L. 2009. Ecological limits on clade diversification in higher taxa. Am Nat, 173: 662–674
Rabosky D. L. 2012. Testing the time-for-speciation effect in the assembly of regional biotas. Methods Ecol Evol, 3: 224–233
Ricklefs R. E. 2004. A comprehensive framework for global patterns in biodiversity. Ecol Lett, 7: 1–15
Roelants K., Gower D. J., Wilkinson M., Loader S. P., Biju S. D., Guillaume K., Moriau L., Bossuyt F. 2007. Global patterns of diversification in the history of modern amphibians. Proc Natl Acad Sci USA, 104: 887–892
Roncal J., Blach-Overgaard A., Borchsenius F., Balslev H., Svenning J. C. 2011. A dated phylogeny complements macroecological analysis to explain the diversity patterns in Geonoma (Arecaceae). Biotropica, 43: 324–334
Ronquist F., Huelsenbeck J. P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19: 1572–1574
Rutschmann F. 2005. Bayesian molecular dating using PAML/multidivtime. A step-by-step manual. University of Zurich, Switzerland. Available at:
Sakamoto M., Tominaga A., Matsui M., Sakata K., Uchino A. 2009. Phylogeography of Hynobius yatsui (Amphibia: Caudata) in Kyushu, Japan. Zool Sci, 26: 35–47
Sanderson M. J. 2002. Estimating absolute rates of molecular evolution and divergence times: A penalized likelihood approach. Mol Biol Evol, 19: 101–109
Sanderson M. J. 2003. R8s: Inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics, 19: 301–302
Sanderson M. J., Doyle J. A. 2001. Sources of error and confidence intervals in estimating the age of Angiosperms from rbcL and 18S rDNA data. Am J Bot, 88: 1499–1516
Schwartz R. S., Mueller R. L. 2010. Branch length estimation and divergence dating: estimates of error in Bayesian and maximum likelihood frameworks. BMC Evol Biol, 10: 5
Seifert B. 2009. Cryptic species in ants (Hymenoptera: Formicidae) revisited: We need a change in the alpha-taxonomic approach. Myrmecol News, 12: 149–166
Serizawa K., Suzuki H., Iwasa M. A., Tsuchiya K., Pavlenko M. V., Kartavtseva I. V., Chelomina G. N., Dokuchaev N. E., Han S. H. 2002. A spatial aspect on mitochondrial DNA genealogy in Apodemus peninsulae from East Asia. Biochem Genet, 40: 149–161
Shimodaira H., Hasegawa M. 1999. Multiple comparisons of loglikelihoods with applications to phylogenetic inference. Mol Biol Evol, 16: 1114–1116
Stamatakis A. 2006. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22: 2688–2690
Stamatakis A., Blagojevic F., Nikolopoulos D., Antonopoulos C. 2007. Exploring new search algorithms and hardware for phylogenetics: RAxML meets the IBM cell. J VLSI Signal Process, 48: 271–286
Stebbins G. L. 1974. Flowering Plants: Evolution above the Species Level. Cambridge: Harvard University Press
Stephens P. R., Wiens J. J. 2003. Explaining species richness from continents to communities: The time-for-speciation effect in emydid turtles. Am Nat, 161: 112–128
Stewart J. R., Lister A. M. 2001. Cryptic northern refugia and the origins of the modern biota. Trends Ecol Evol, 16: 608–613
Svenning J. C., Skov F. 2005. The relative roles of environment and history as controls of tree species composition and richness in Europe. J Biogeogr, 32: 1019–1033
Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 28: 2731–2739
Tanaka K., Saugstad E. S., Mizusawa K. 1975. Mosquitoes of the Ryukyu Archipelago (Diptera: Culicidae). Mosq Syst, 7: 207–233
Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997. The Clustal X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 24: 4876–4882
Thorne J. L., Kishino H. 2002. Divergence time and evolutionary rate estimation with multilocus data. Syst Biol, 51: 689–702
Thorne J. L., Kishino H., Painter I. S. 1998. Estimating the rate of evolution of the rate of molecular evolution. Mol Biol Evol, 15: 1647–1657
Tominaga A., Matsui M. 2007. Estimation of the type locality of Hynobius naevius (Temminck and Schlegel, 1838), a salamander from Japan (Amphibia: Caudata). Zool Sci, 24: 940–944
Tominaga A., Matsui M. 2008. Taxonomic status of a salamander species allied to Hynobius naevius and a reevaluation of Hynobius naevius yatsui Oyama, 1947 (Amphibia, Caudata). Zool Sci, 25: 107–114
Tominaga A., Matsui M., Nishikawa K., Tanabe S. 2006. Phylogenetic relationships of Hynobius naevius (Amphibia: Caudata) as revealed by mitochondrial 12S and 16S rRNA genes. Mol Phylogenet Evol, 38: 677–684
Tominaga A., Matsui M., Nishikawa K., Tanabe S., Sato S. 2005a. Genetic differentiations of Hynobius naevius (Amphibia, Hynobiidae) as revealed by allozyme analysis. Biochem Syst Ecol, 33: 921–937
Tominaga A., Matsui M., Nishikawa K., Tanabe S., Sato S. 2005b. Morphological discrimination of two genetic groups of a Japanese salamander, Hynobius naevius (Amphibia, Caudata). Zool Sci, 22: 1229–1244
Tominaga A., Matsui M., Yoshikawa N., Nishikawa K., Hayashi T., Misawa Y., Tanabe S., Ota H. Phylogeny and historical demography of Cynops pyrrhogaster (Amphibia: Urodela): Taxonomic relationships and distributional changes associated with climatic oscillations. Mol Phylogenet Evol (In press)
Tominaga A., Ota H., Matsui M. 2010. Phylogeny and phylogeography of the sword-tailed newt, Cynops ensicauda (Amphibia: Caudata), as revealed by nucleotide sequences of mitochondrial DNA. Mol Phylogenet Evol, 54: 910–921
Vieites D. R., Min M. S., Wake D. B. 2007. Rapid diversification and dispersal during periods of global warming by plethodontid salamanders. Proc Natl Acad Sci USA, 104: 19903–19907
Vieites D. R., Zhang P., Wake D. B. 2009. Salamanders (Caudata). In Hedges S. B., Kumar S. (Eds.), The Timetree of Life. New York: Oxford University Press, 365–368 pp
Wiens J. J. 2007. Global patterns of diversification and species richness in amphibians. Am Nat, 170: S86–S106
Wiens J. J., Donoghue M. J. 2004. Historical biogeography, ecology, and species richness. Trends Ecol Evol, 19: 639–644
Wiens J. J., Graham C. H., Moen D. S., Smith S. A., Reeder T. W. 2006. Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs: Treefrog trees unearth the roots of high tropical diversity. Am Nat, 168: 579–596
Wiens J. J., Sukumaran J., Pyron R. A., Brown R. M. 2009. Evolutionary and biogeographic origins of high tropical diversity in Old World frogs (Ranidae). Evolution, 63: 1217–1231
Willis J. C. 1922. Age and Area. Cambridge: Cambridge University Press
Wuyts J., Perriere G., Van de Peer Y. 2004. The European ribosomal RNA database. Nucleic Acids Res, 32: D101–D103
Yang Z. 2007. PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol, 24: 1586–1591
Yoshikawa N., Matsui M., Nishikawa K. 2010a. Allozymic variation and phylogeography of two genetic types of Onychodactylus japonicus (Amphibia: Caudata: Hynobiidae) sympatric in the Kinki District, Japan. Zool Sci, 27: 344–355
Yoshikawa N., Matsui M., Nishikawa K. 2012. Genetic structure and cryptic diversity of Onychodactylus japonicus (Amphibia, Caudata, Hynobiidae) in northeastern Honshu, Japan, as revealed by allozymic analysis. Zool Sci, 29: 229–237
Yoshikawa N., Matsui M., Nishikawa K., Kim J. B., Kryukov A. 2008. Phylogenetic relationships and biogeography of the Japanese clawed salamander, Onychodactylus japonicus (Amphibia: Caudata: Hynobiidae), and its congener inferred from the mitochondrial cytochrome b gene. Mol Phylogenet Evol, 49: 249–259
Yoshikawa N., Matsui M., Nishikawa K., Misawa Y., Tanabe S. 2010b. Allozymic variation in the Japanese clawed salamander, Onychodactylus japonicus (Amphibia: Caudata: Hynobiidae), with special reference to the presence of two sympatric genetic types. Zool Sci, 27: 33–40
Zeng X., Fu J. 2004. Low genetic diversity in Chinese Hynobius leechii, with comments on the validity of Hynobius mantchuricus. Amphibia-Reptilia, 25: 119–122
Zhang H., Yan J., Zhang G., Zhou K. 2008. Phylogeography and demographic history of Chinese black-spotted frog populations (Pelophylax nigromaculata): Evidence for independent refugia expansion and secondary contact. BMC Evol Biol, 8: 21
Zhang P., Chen Y. Q., Zhou H., Liu Y. F., Wang X. L., Papenfuss T. J., Wake D. B., Qu L. H. 2006. Phylogeny, evolution, and biogeography of Asiatic Salamanders (Hynobiidae). Proc Natl Acad Sci USA, 103: 7360–7365
Zhang P., Papenfuss T. J., Wake M. H., Qu L., Wake D. B. 2008. Phylogeny and biogeography of the family Salamandridae (Amphibia: Caudata) inferred from complete mitochondrial genomes. Mol Phylogenet Evol, 49: 586–597
Zhang P., Wake D. B. 2009. Higher-level salamander relationships and divergence dates inferred from complete mitochondrial genomes. Mol Phylogenet Evol, 53: 492–508
Zheng Y., Peng R., Kuro-o M., Zeng X. 2011. Exploring patterns and extent of bias in estimating divergence time from mitochondrial DNA sequence data in a particular lineage: A case study of salamanders (Order Caudata). Mol Biol Evol, 28: 2521–2535


Last Update: 2016-03-15