Xue LIAN,Zhigang JIANG,Xiaoge PING,et al.Spatial Distribution Pattern of the Steppe Toad-headed Lizard (Phrynocephalus frontalis) and Its Influencing Factors[J].Asian Herpetological Research(AHR),2012,3(1):46-51.[doi:10.3724/SP.J.1245.2012.00046]
Click Copy

Spatial Distribution Pattern of the Steppe Toad-headed Lizard (Phrynocephalus frontalis) and Its Influencing Factors
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

Issue:
2012 VoI.3 No.1
Page:
46-51
Research Field:
Original Article
Publishing date:
2012-03-25

Info

Title:
Spatial Distribution Pattern of the Steppe Toad-headed Lizard (Phrynocephalus frontalis) and Its Influencing Factors
Author(s):
Xue LIAN1 2 Zhigang JIANG1 Xiaoge PING1 Songhua TANG1 Junhuai BI2* and Chunwang LI1*
1 Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
2 College of Life Science and Technology, Inner Mongolia Normal University, Huhhot 010022, Inner Mongolia, China
Keywords:
sand lizard Phrynocephalus frontalis spatial distribution environmental factor quadrat-sampling effect
PACS:
-
DOI:
10.3724/SP.J.1245.2012.00046
Abstract:
Spatial distribution patterns are associated with life history and behavioral adaptations of animals. For studying the spatial distribution pattern of the steppe toad-headed lizard (Phrynocephalus frontalis) and its influencing factors, we conducted experiments in Hunshandake Sandy Land in Inner Mongolia, China in July 2009. By calculating the clustered indices, we found that the lizard was aggregately distributed when the sampling quadrat was smaller than 10 m × 10 m, and uniformly distributed when it was greater than 10 m × 10 m. The Nearest Neighbor Rule showed a clustering distribution pattern for P. frontalis and the distribution pattern was quadrat-sampling dependent. Furthermore, the cluster was determined by environmental factors when the sampling quadrat was smaller than 20 m × 20 m, but it was determined by both environmental factors and characteristics of the lizard when it was larger than 20 m × 20 m. Our results suggested that the steppe toad-headed lizards tended to aggregate into suitable habitat patches in desert areas. Additionally, we discussed that the lizard aggregation could be potentially used as an indictor of movement of sand dunes.

References:

Arbous A. G., Kerrich J. E. 1951. Accident statistics and concept of accident proneness. Biometrics, 7: 340–432
Burnham K. P., Anderson D. R., Lake J. L. 1980. Estimation of density from line transect sampling of biological populations. Wildlife Monogr, 72: 1–202
Chen J., Wang Y., Lei G., Wang R., Xu R. 2004. Impact of habitat quality on metapopulation structure and distribution of two melitaeine butterfly species. Acta Entomol Sin, 47(1): 59–66
Clark P. J., Evans F. C. 1954. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology, 35: 445–453
Ding G., Li S., Cai J. 2005. Pasture resources evaluation and stocking density in Hunshandake Sandy Land: Case study of Zhenglan Banner, Inner Mongolia. Chin J Ecol, 24(9): 1038–1042
Fang J. 1994. Spatial distribution patterns of rodents. Chin J Ecol, 13(1): 39–44
Fang J., Sun R. 1991. Seasonal dynamics of the spatial patterns of Brandt’s Voles. Curr Zool, 11(2): 111–116
Fischer J., Lindenmayer D. B., Barry S., Flowers S. 2005. Lizard distribution patterns in the Tumut fragmentation “Natural Experiment” in south-eastern Australia. Biol Conserv, 123(2): 301–315
Fisher R. N., Suarez A. V., Case T. J. 2002. Spatial patterns in the abundance of the coastal horned lizard. Conserv Biol, 16(1): 205–215
Garland T. Jr. 1985. Ontogenetic and individual variation in size, shape and speed in the Australian agamid lizard Amphibolurus nuchalis. J Zool, 207: 425–439
Ge B., Bao Y., Zheng X. 2004. Effects of habitat fragmentation on animals and research situation of metapopulation. J NE For Univ, 32(1): 35–38
Guo L. 2004. Effects of habitat changes on pasture lizard (Phrynocephalus frontalis) population in Tumote Plain of NeiMongol. J Inner Mongolia Univ (Nat Sci), 35(6): 658–662
Halloy M., Robles C. 2002. Spatial distribution in a neotropical lizard, Liolaemus quilmes (Liolaemidae): Site fidelity and overlapping among males and females. Bull Maryland Herpetol Soc, 38: 118–129
Herron J. 1994. Body size, spatial distribution, and microhabitat use in the caimans, Melanosuchus niger and Caiman crocodilus, in a Peruvian lake. J Herpetol, 28(4): 508–513
Irschick D. J., Losos J. B. 1999. Do lizards avoid habitats in which performance is submaximal? The relationship between sprinting capabilities and structural habitat use in Caribbean anoles. Am Nat, 154: 293–305
Iwao S. 1972. Application of the m*-m method to the analysis of spatial patterns by changing the quadratic size. Res Popul Eco1, 14(1): 97–128
Kramer V., Beesley C. 1993. Temporal and spatial distribution of Ixodes pacificus and Dermacentor occidentalis (Acari: Ixodidae) and prevalence of Borrelia burgdorferi in Contra Costa County, California. J Med Entomol, 30(3): 549–554
Lan G. 2003. Brief introduction of spatial methods to distribution patterns of population. J NW For Univ, 18(2): 17–21
Li H. 1995. Introduction to studies of the pattern of plant population. Bot Bull Acad Sin, 12(2): 19–26
Li C., Lian X., Bi J., Maul T. L., Jiang Z. 2011. Effects of sand grain size and morphological traits on running speed of toad-headed lizard Phrynocephalus frontalis. J Arid Environ, 75(11): 1038–1042
Lian X. 2011. Spatio-temporal Distribution and Habitat Use of Steppe Toad-headed Lizard (Phrynocephalus frontalis) and Its Role in Pest Control. Master Thesis. Inner Mongolia Normal University, Huhhot, China.
Liu H., Guo K. 2003. Classification and ordination analysis of plant communities in inner-dune lowland in Hunshandake Sandy Land. Acta Ecol Sin, 23(10): 2163–2169
Liu N., Jin Y., Yang M. 2008. Sand lizards in China. Bull Biol, 43(11): 1–3
Lloyd M. 1967. Mean crowding. J Anim Ecol, 36: 1–30
Munkhbaatar M., Baillie J. E. M., Borkin L., Batsaikhan N., Samiya R., Semenov D. V. 2006. Mongolian Red List of Reptiles and Amphibians. London: Zool Soc London, Regent’s Park, 41–42
Newbold T. A. S. 2005a. Desert hornrd lizard (Phrynosoma pltyrhinos) locomotor perfprmance: The influence of cheatgrass (Bromos tectorum). SW Nat, 50(1): 17–23
Newbold T. A. S. 2005b. Biotic and abiotic determinants of species distribution: Desert horned lizards (Phrynosoma platyrhinos) and ants in a shrub-steppe ecosystem. Logan: Utah State Univ
Nie C., Zheng Y. 2005. Study on the desertification of Otindag Sandy Land a case in point of the Zhenglan Banners. J Jilin Agric Univ, 27(2): 183–189
Paiva A., Lima M., Souza J. 2009. Spatial distribution of the estuarine ichthyofauna of the Rio Formoso (Pernambuco, Brazil), with emphasis on reef fish. Zoologia, 26: 266–278
Peng Y., Jiang G., Niu S., Liu M., Ding S., Liu S. 2006. Communities of typical sand dune-fixed plants in the central part of Otindag Sandy Region. Acta Bot Boreali-Occidentalia Sin, 26(7): 1414–1419
Pielou E. C. 1969. An Introduction to Mathematical Ecology, New York: Wiley Interscience, 286 pp
Schulte J. A. II, Losos J. B., Cruz F. B., Húňez H. 2004. The relationship between morphology, escape behaviour and microhabitat occupation in the lizard clade Liolaemus (Iguanidae: Tropidurinae*: Liolaemini). J Exp Biol, 17: 408–420
Vanhooydonck B., Van Damme R., Aerts P. 2002. Variation in speed, gait characteristics and microhabitat use in lacertid lizards. J Exp Biol, 205: 1037–1046
Wang Y. Fu J. 2004. Cladogenesis and vicariance patterns in the toad-headed lizard Phrynocephalus versicolor species complex. Copeia, 2004(2): 199–206
Wang L., Hu X., Yu W., Li G., Guo J. 2006. Spatial heterogeneity of granule diameter and its relation with shrub size and soil erosion. Arid Land Geog, 29(5): 688–693
Whiting M., Dixon J., Murray R. 1993. Spatial distribution of a population of Texas horned lizards (Phrynosoma cornutum: Phrynosomatidae) relative to habitat and prey. SW Nat, 38(2): 150–154
Wu N., Tang T., Qu X. 2009. Spatial distribution of benthic algae in the Gangqu River, Shangrila, China. Aquat Ecol, 43(1): 37–49
Yang T., Zeng P. 2000. Population ecology of Contracaecum rudolphii in the host Gymnocypris przewalskii przewalskii in Qinghai Lake. Acta Hydrol Sin, 24(3): 213–218
Zaady E., Bouskila A. 2002. Lizard burrows association with successional stages of biological soil crusts in an arid sandy region. J Arid Environ, 50: 235–246
Zhang Z., Zhao T., Li X., Zhang C., Qi L., Wu Y. 1997. Preliminary study on the distribution pattern of the hole of great gerbil (Rhombomys opimus). Chin J Zool, 32(3): 26–28
Zhang A., Feng J., Yu Y., Zhang S., Li Z. 2004a. Studies on the population dynamics and spatial distribution of Hyalopterus amygdali. J Shandong Agric Univ (Nat Sci), 35(1): 75–78
Zhang T., Zhao H., Li S., Li F., Shirato Y., Ohkuro T., Taniyama I. 2004b. A comparison of different measures for stabilizing moving sand dunes in the Horqin Sandy Land of Inner Mongolia, China. J Arid Environ, 58: 203–214
Zhao K. 1997. Toad-headed agamids in China. Chin J Zool, 32(1): 15–19
Zhao K. 2001. Agamidae. In Xurigan (Ed.), Fauna Inner Mongolia, Vol. 2. Hohhot: Inner Mongolia University Press, 60–172
Zhou L., Ma Y., Li D. 2001. Spatial distribution patterns of Chinese gerbils (Gerbilline) in relation to environmental factors. Curr Zool, 47(6): 616–624

Memo

Memo:
-
Last Update: 2016-03-15