Xiaoyu SUN,Shaoying LIU and Song HUANG.Tibetan Plateau Relict Snakes of the Genus Thermophis and Their Relationship to New World Relict Snakes[J].Asian Herpetological Research(AHR),2011,2(3):161-168.[doi:10.3724/SP.J.1245.2011.00161]
Click Copy

Tibetan Plateau Relict Snakes of the Genus Thermophis and Their Relationship to New World Relict Snakes
Share To:

Asian Herpetological Research[ISSN:2095-0357/CN:51-1735/Q]

2011 VoI.2 No.3
Research Field:
Original Article
Publishing date:


Tibetan Plateau Relict Snakes of the Genus Thermophis and Their Relationship to New World Relict Snakes
Xiaoyu SUN 14 * Shaoying LIU 23* and Song HUANG 124**
1 College of Life and Environment Sciences, Huangshan University, Huangshan 245021, Anhui, China
2 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
3 Sichuan Academy of Forestry, Chengdu 610066, Sichuan, China
4 Institute of Biodiversity and Geobiology, Department of Life Sciences, Tibet University, Lhasa 850000, Xizang, China
Thermophis Tibet Dipsadinae ND2 Asian-North American origin
The complete mitochondrial NADH dehydrogenase subunit 2 (ND2) gene sequences of two species of Thermophis, T. baileyi and T. zhaoermii, were sequenced and compared to those of 86 sequences from other snakes (74 from Caenophidia and 12 from Henophidia). By using Bayesian inference (BI) and maximum likehood (ML) approaches, Thermophis was demonstrated as the sister group to the North American relicts of Dipsadinae, and rooted in Central and South American members of this subfamily. The results suggest that the closest relatives of Thermophis are the North American relicts, and thus support the hypothesis for an Asian-North American origin of xenodontine snakes as suggested by Vidal et al. (2000). Extensive sampling of Asian snakes and American dipsadines is needed to further test this hypothesis in the future.


Alfaro M. E., Arnold S. J. 2001. Molecular systematics and evolution of Regina and the thamnophiine snakes. Mol Phylogenet Evol, 21: 408–423
Burbrink F. T., Lawson R. 2007. How and when did Old World ratsnakes disperse into the New World? Mol Phylogenet Evol, 43: 173–189
Busack S. D., Lawson, R. 2008. Morphological, mitochondrial DNA and allozyme evolution in representative amphibians and reptiles inhabiting each side of the Strait of Gibraltar. Biol J Linn Soc Lond, 94: 445–461
Castoe T. A., Jiang Z. J., Gu W., Wang Z. O., Pollock D. D. 2008. Adaptive evolution and functional redesign of core metabolic proteins in snakes. PLoS ONE, Vol. 3 (5): e2201
Castoe T. A., Gu W., de Koning A. P., Daza J. M., Jiang Z. J., Parkinson C. L., Pollock D. D. 2009a. Dynamic nucleotide mutation gradients and control region usage in squamate reptile mitochondrial genomes. Cytogenet Genome Res, 127(2-4): 112-127
Castoe T. A., de Koning A. P., Kim H. M., Gu W., Noonan B. P., Naylor G., Jiang Z. J., Parkinson C. L., Pollock D. D. 2009b. Evidence for an ancient adaptive episode of convergent molecular evolution. Proc Natl Acad Sci USA, 106(22): 8986-8991
Dong S., Kumazawa Y. 2005. Complete mitochondrial DNA sequences of six snakes: Phylogenetic relationships and molecular evolution of genomic features. J Mol Evol, 61: 12–22
Dorge T., Hofmann S., Wangdwei M., Duoje L., Solhoy T., Miehe G. 2007. The ecological specialist, Thermophis baileyi (Wall, 1907) – new records, distribution and biogeographic conclusions. Br Herpetol Soc, 101: 8–12
Douglas D., Janke A., Arnason U. 2006. A mitogenomic study on the phylogenetic position of snakes. Zool Sci, 35: 545–558
Douglas D. A., Gower D. J. 2010. Snake mitochondrial genomes: Phylogenetic relationships andimplications of extended taxon sampling for interpretations of mitogenomic evolution. BMC Genom, 11: 14
Guicking D., Lawson R., Joger U., Wink M. 2006. Evolution and phylogeny of the genus Natrix (Serpentes: Colubridae). Biol J Linn Soc Lond, 87: 127–143.
Guo P., Liu S., Feng J., He M. 2008. The description of a new species of Thermophis (Serpentes: Colubridae). Sichuan J Zool, 27: 321
He M., Feng J., Liu S., Guo P., Zhao E. 2009. The phylogenetic position of Thermophis (Serpentes: Colubridae), an endemic snake from the Qinghai-Xizang Plateau, China. J Nat Hist, 43: 479–488
Hedges S. B., Couloux A., Vidal N. 2009. Molecular phylogeny, classification, and biogeography of West Indian racer snakes of the Tribe Alsophiini (Squamata, Dipsadidae, Xenodontinae). Zootaxa, 2067: 1–28
Huang S., He S., Peng Z., Zhao K., Zhao E. 2007. Molecular phylogeography of endangered sharp-snouted pitviper (Deinagkistrodon acutus; Reptilia, Viperidae) in Mainland China. Mol Phylogenet Evol, 44: 942–952
Huang S., Liu S., Guo P., Zhang Y., Zhao E. 2009. What are the closest relatives of the hot-spring snakes (Colubridae, Thermophis) the relict species endemic to the Tibetan Plateau? Mol Phylogenet Evol, 51: 438–446
Huelsenbeck J. P., Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17: 754–755
Jiang Z. J., Castoe T. A., Austin C. C. Burbrink F. T., Herron M. D., McGuire J. A., Parkinson C. L., Pollock D. D. 2007. Comparative mitochondrial genomics of snakes: Extraordinary substitution rate dynamics and functionality of the duplicate control region. BMC Evol Biol, 7: 123
Wiens J. J., Kuczynski C. A., Smith S. A., Mulcahy D. G., Sites J. W. Jr., Townsend T. M., Reeder T. W. 2008. Branch lengths, support, and congruence: Testing the phylogenomic approach with 20 nuclear loci in snakes. Syst Biol, 57(3): 420–431
Kumazawa Y., Nishida M. 1995. Variations in mitochondrial tRNA gene organization of reptiles as phylogenetic markers. Mol Biol Evol, 12: 759–772
Kumazawa Y., Ota H., Nishida M., Ozawa T. 1998. The complete nucleotide sequence of a snake (Dinodon semicarinatus) mitochondrial genome with two identical control regions. Genetics, 150: 313–329
Kelly C. M. R., Barker N. P., Villet M. H. 2003. Phylogenetics of advanced snakes (Caenophidia) based on four mitochondrial genes. System Biol, 52: 439–459
Ling C., Liu S. Y., Huang S., Burbrink F. T., Guo P., Sun Z. Y., Zhao J. 2010. Phylogenetic analyses reveal a unique species of Elaphe (Serpentes, Colubridae) new to science. Asian Herpetol Res, 1(2): 90-96
Liu S., Zhao E. 2004. Discovery of Thermophis baileyi (Wall, 1907), a snake endemic to Xizang AR, from Litang County, Sichuan, China. Sichuan J Zool, 23: 234–235
Lawson R., Slowinski J. B., Crother B. I., Burbrink F. T. 2005. Phylogeny of the Colubroidea (Serpentes): New evidence from mitochondrial and nuclear genes. Mol Phy Evol, 37: 581–601
Malnate E. V. 1953. The taxonomic status of the Tibetan colubrid snake Natrix baileyi. Copeia, 1953: 92–96
Mulcahy D. G., Macey J. R. 2009. Vicariance and dispersal form a ring distribution in night snakes around the Gulf of California. Mol Phylogenet Evol, 53: 537–546
Nagy Z. T., Lawson R., Joger U., Wink M. 2004. Molecular systematics of racers, whipsnakes and relatives (Reptilia: Colubridae) using mitochondrial and nuclear markers. J Zool Syst Evol Res, 42: 223–233
Posada D., Crandall K. A. 1998. Modeltest: Testing the model of DNA substitution. Bioinformatics, 14: 817–818
Pinou T., Vicarioa S., Marschner M., Caccone A. 2004. Relict snakes of North America and their relationships within Caenophidia, using likelihood-based Bayesian methods on mitochondrial sequences. Mol Phylogenet Evol, 32: 563–574
Pyron R. A., Burbrink F. T. 2009. Neogene diversification and taxonomic stability in the snake tribe Lampropeltini (Serpentes: Colubridae). Mol Phylogenet Evol, 52: 524–529
Pyron R. A., Burbrink F. T., Colli G. R., Montes A. N., Vitt L. J., Kuczynski C. A., Wiens J. J. 2011. The phylogeny of advanced snakes (Colubroidea), with discovery of a new subfamily and comparison of support methods for likelihood trees. Mol Phylogenet Evol, 58(2): 329–342
Rao D. Q. 2000. Complimentary survey of the herpetofauna of Xizang Autonomous Region (Tibet) with discussion of their distribution and current status. Sichuan J. Zool. 19: 107–112 (In Chinese)
Sambrook J., Fritsch E. F., Maniatis T. 1989. Molecular Cloning: A Laboratory Manual, Seconded. New York, America: Cold Spring Harbor Lab Press
Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997. The CLUSTAL_X windows interface: Fexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res, 25: 4876–4882
Townsend T., Larson A., Louis E., Macey J. R. 2004. Molecular phylogenetics of squamata: The position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree. Syst Biol, 53: 735–757
Tamura K., Dudley J., Nei M., Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0, Mol Biol Evol, 24: 1596–1599
Vidal N., Shannon G. K., Wong A., Hedges S. B. 2000. Phylogenetic relationships of xenodontine snakes inferred from 12S and 16S ribosomal RNA sequences. Mol Phylogenet Evol, 14(3): 389–402
Vidal N., Ma?l D., David J. G. 2010. Dissecting the major American snake radiation: A molecular phylogeny of the Dipsadidae Bonaparte (Serpentes, Caenophidia). C R Biol, 333: 48–55
Wall F. 1907. Some new Asian snakes. J Bombay Nat Hist Soc, 17: 612–618
Wüster W., Ferguson J. E., Quijada-Mascare?as J. A., Pook C. E., Salom?o Mda G., Thorpe R. S. 2005. Tracing an invasion: Landbridges, refugia, and the phylogeography of the Neotropical rattlesnake (Serpentes: Viperidae: Crotalus durissus). Mol Ecol. 14 (4): 1095–1108
Yan J., Li H., Zhou K. 2008. Evolution of the mitochondrial genome in snakes: Gene rearrangements and phylogenetic relationships. BMC Genom, 9: 569
Zaher H. 1999. Hemipenial morphology of the South American xenodontine snakes, with a proposal for a monophyletic Xenodontinae and a reappraisal of colubroid hemipenes. Bull Am Mus Nat Hist, 240: 1–168
Zaher H., Grazziotin F., Cadle J., Murphy R., Moura-Leite J., Bonatto S. 2009. Molecular phylogeny of advanced snakes (Serpentes, Caenophidia) with an emphasis on South American Xenodontines: A revised classification and descriptions of new taxa. Pap Avulsos Zool (S?o Paulo), 49(11): 115–153


Last Update: 2016-03-15